
5) x = 0.5; 6) x = 0.55; 7) x = 0.65], while the velocity distribution in the jet part of the 
wall jet (not presented in the article) retains the form of the velocity profile of that part 
of the jet in the mixing zone which turns into the cavity after hitting the back wall (below 
the line y = 0), i.e., exactly the same pattern as in a square cavity (Fig. 3 of [3]) is 
observed. 
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FLOW OF A LIQUID FILM OVER THE INNER SURFACE 

OF A ROTATING CYLINDER 

Yu. V. Martynov UDC 532.516 

i. The dimensionless equations of motion and continuity and the boundary conditions in 
a coordinate system y, z, ~(where z = z ~ is the axial coordinate, ~ = ~o, y = R-- r ~ the 
origin is located on the joint between semiinfinite tubes, z ~ r ~ o is a cylindrical coordi- 
nate system) rotating about the axis of symmetry of a cylinder with the angular velocity of 
rotation of the upper semiinfinite tube have the form [i, 2] 

( 0% av~ v~ ~ Op [02% 02% i 0% % ] (1.1) 
- + E L v +  j ': Oy o~ ~ n + y oy (n ~y)~ 

[ 0% 0% VyV~ I [ 02% 02% l 0% 

( Ov~ Ovz~ Op [02vz 02v~ t Ov~ 
oy 

0% Ovy Vy --0~ Yy=--Ur;  
o - ; + ~ +  ~ + y  . 

y = 0 ,  z < O ,  v~ = v z = vo = 0 ,  

i �9 z > O, vy ---- v~ = 0 ,  Vo = o~1; 

y = h (z), kog @ Oz ] q- 4h~ -~y = O~ 

2 E ~ ( t - - h J - - E h ~ a y  + ayj (~jW [h~+(~+y)~h=l(l+hD= 

Ovo/Og + vel(~ + y) = O. = p ( t  + = 

i +~7"' 

(1.2) 

(1.3) 

Boundary conditions as z §176 be described below. The problem of Eqs. (1.1)-(1.3) 
is reduced to dimensionless form by replacement of the variables r, v, ~, p by their 
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normalized values rh', vU', ~k, p'~'iU'h'p. The dimensioned values are denoted with primes 
as follows: 

h' = (3Q'v' /g') l /% Q' = Q~/2~R'~ ~ = R ' /h '~  
t ? 

U' = Q' /h '  = Q' (3Q'v' /g')- i /8~ v~ = v~ /U (L = y~ z~ 0)~ 

p = ( p ' - - p ~ ) / ( p ' Q ~ U ' h ' ) ~  h = h '  (z) /h ' t  ( 1 . 4 )  

r 
= o/Ql~ Q~ ~ i + o,~ 

,,/~,h v2 Where E = v t x is the Eckman number, s = U'/~h' is the Rossby number, Fr = ~;U'/g' is 

the Froud number, ~ = o'/(p'U'~h); o' is the surface tension coefficient; v0, Vz, Vy are 
the velocity components along the axes 0, z, y, ~ is the angular velocity of the upper 

semiinfinite tube, ~ is the distance between the angular velocities of the upper tube ~t and 
the lower tube Q2, po is the pressure in the gas phase, ~' is the kinematic viscosity, g' 

! 

is the gravitational constant, 0o is the liouid flow rate. 

Boundary conditions (1.2) describe adhesion on the walls of the upper and lower tubes. 

Boundary conditions (1.3) equate the tangent stress on the film surface to zero and the nor- 
mal stress to the pressure of the gas phase. Conditions (1.3) are written with consideration 
of the curvature of the film surface. 

We will study the case in which inertial forces (except the Coriolis force) may be 

neglected, i.e., the case in which the following expressions are satisfied: s/E << i, Fr-~/E 

~ 0(i), E ~ 0(i). Substituting Eq. (1.4) in these equations, we obtain 

e /E  = Q' /v '  << 1, F r - V E  = 3 -- ,  O ( t ) ,  

E = , / ( f ~ ' O  -~  ( 3 Q ' , / / e ' )  -~/~ ,-, o ( t) .  
(1.5) , 

If conditions (1.5) are satisfied, then all terms in Eq. (i.i) (except inertial ones) 

are of the same magnitude, so that for the last expression to be satisfied it is necessary 

that ~[ ~ ~' (3Q'~'/g) -2/3, since Q'/~' << 1, while g' = 10 3 cm2/sec, so that ~[ >> i. A 

detailed analysis of the forces produced by liquid motion in rotating channels is presented in 
[1]. 

We will consider the case in which the difference between the angular velocities of the 

tubes is small, i.e., ~ << I. We relatethe smallparameter s to wbt the expression ~= s~o (~o = 

~/~[), ~o ~ 0(i). We will consider flow in a tube the radius of which n ~ 0(~-i/2). For 

convenience in evaluating the terms of Eq. (i.i) we introduce the new parameter R = ci/=~. 

In this case Eq. (1.2) takes on the form 

y = O, z > O ,  v 0 = e l /2QoR.  

To solve the problem of Eqs. (1.1)-(1.3) it is necessary to find the velocity profiles 
and pressure distribution as z * +~. To do this we consider separately the flows in region 
I, located infinitely (z ~-~o) up the flow, and in region II, located infinitely (z § 4~o) 
down the flow. 

2. In regions I and II the flow is independent of z (derivatives with respect to z are 
equal to zero, there is no radial flow, film thickness is constant). Moreover, since one 
and the same force acts in the axial plane in regions I and II, the profiles of the axial 
velocity component and liquid film thickness are identical. In regions I and II the problem 
of Eqs. (1.1)-(1.3) reduces to the form 

2vo = Op ovz 
8y ' 8z = Or 

Op ( 02vz 
Oz + E oy ~ 

02% e1~'= Ov 0 roe 

Oy ~ R a y  R~.. " O, 
81/2 OV z ~ 7v/+~ =~ 

(2.1) 
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y = 0 ,  v u : v z = v o = 0 ;  

y = 0 ,  v u = vz = 0 ,  v o = 8 1 / 2 R ~ 0 ;  

y = i ,  OVo/Oy @ vOet/2/R = O, Ovz/Oy = O, a s / B  2 + p = 0 .  

Here c o n d i t i o n  (2 .2 )  i s  w r i t t e n  f o r  r e g i o n  I ,  and c o n d i t i o n  (2 .3)  
seek  a s o l u t i o n  of  the  problems of  Eqs. 
the  form 

(2.2) 

(2.3) 

(2.4) 

for region II. We will 
(2.1), (2.2), (2.4)and Eqs. (2.1), (2.3), (2.4)in 

Substituting Eq. 
regions I and II: 

(2.5) 

v~ =  v[ + d%(~ " + ~v~ ~) + . . .  ()~ = ~ ,  o), 
p = p O +  s~/~pO) + sp(~-) + ... 

i n  Eqs.  ( 2 . 1 ) - ( 2 . 4 ) ,  we f i n d  the  s o l u t i o n  of  t he  problem i n  

y~ y .); 
vz E Fr \ 2' 

p = 0 ,  % = 0 ,  h = l ;  

P = 2e~/2(y - -  l)~o -- 2e[~0(y 2 --  t)/2 - - a / R 2 ] ,  

v o = si/eB~2o - -  ~yg2 o, h = i .  

(2.5) 

(2.6) 

(2.7) 

(2 .8)  

Thus, the solution in region I has the form of Eqs. (2.6), (2.7), while the solution in 
region II is given by Eqs. (2.6), (2.8). Consequently, the solutions of (1.1)-(1.3) for the 
tube junction region must tend to Eqs. (2.6), (2.7) as z +--~, and to Eqs. (2.6), (2.8) as 
z + +r 

3. We will consider the solution inthe junction region. We will seek a solution of Eqs. 
(1.1)-(1.3), (2.6), (2.8) in the form 

Substituting Eq. 

v~ = v[  ~ + ~1/2v~> + ~v[2) + . (~ = y ,  ~, 0), 
p = p(O) + ~i/2p(I) + ep(2) ~ .... h = I + et/2h O) ~- eh(2) + ... 

(3.1) in Eqs. (1.1)-(1.3), (2.6), (2.8), we obtain 

(3.1) 

, ~  02vlO) t 2v~ 2v(oO) Op(O) , o % [ O~v(oO ) 0%(0o) ~ (3 .2)  

o~?~ o~o~ = o; 
o~ + -- '~ j 

g= 0,: v(~ ~ = v(z ~ = vg ~ ---- O; (3.3) 

y = i , J  2 E - ~ y = p  (~ --~-z + - ~ f = 0 ,  oy = 0 ;  (3 .4)  

z--~--I-co~ V~y~ .(o)_+ 'l. [ y~ uz ~--F--~ ~-- -~- + y), v(o~ -+ O. (3.5) 

By writing the axial velocity in the form vz = ~ ---~- + Y + V. we reduce the equations 

and boundary conditions (3.2)-(3.5) to homogeneous equations and boundary conditions for the 

functions p(O), V,, v~~ vl ~ . The solutions of these equations with the boundary conditions found 

are identically equal to zero. Thus, the solution of Eqs. (3.2)-(3.5) has the form 

We will now find the first approximation. Since g appears implicitly in the argument of the 
zeroth approximation function in the boundary conditions at y = I, it is necessary, according 
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to 
Then Eqs. (1.1)--(1.3) take on the form 

[3, 4], first to expand the zeroth approximation function in a Taylor series near y = i. 

2v(~ I) 0p(1) / a2 (yl) 2 (1)\ 
= - -  o - T  + E ~-~-y~ + - o 7 ] ' :  (3.7) 

(ovo 1, OVoq 241) = E ~-~y  + o : / '  

0=  o~ ~ [ 0 ~ + ~ 7 / - ~ ( - Y + ~  ),. 
Or(1) OVl 1) 
ay ' + ~ = O; 

y = O, z < 0 ,  v(~ 1) = v() ) = #o 1) = 0 ,  
(0 v~X) (3 8) z > 0 , :  v~ 1)--v~ =0~ =QoB; 

�9 (OV~ 1). 02V(O)Xy ~(1)|[OV(0)'-Y ~qt/zO) "~ 
Y=~' 2 ~ - ~  + ~ ' ~ )  +~i~)+'~ k 0, + ~ - ~ ) ~ =  

(3.9) 
p(" + #~)o/o) o41) 0~$, #i) ~,~o~ o2(o)\ ~hil ) o~(o) 

= @ = o ;  

form 

,(i)_+ i ( y8 y2 y )  
z - ~ - - o o , ,  v(vl)-+0, v(ol)-+0, ,~ ~ \ - - - ~ +  2 2 ; ( 3 . 1 0 )  

~,  4"~o, ~(o I , ~ o ~ ,  r ~ ( ~ ~'~ ~"): z - +  ~\---6 -+ 2 2 (3.11) 

After substitution of Eq. (3.6) in boundary conditions (3.9) the latter take on the 

y = i t  ov --  0, . '~T: ~ 

(I)  o r ( l )  'o v(i)7.- : l "  ~) 
% ~ h ( ~ )  = p %  ~ - ,(1.) / 0 .  2 E - ~ u  + ~ o z - t ~ y  #'~ ~-- ~- 

( 3 . 1 2 )  

We will now reduce system (3.7) to a single equation in sixth order partial derivatives 
for the radial velocity components. 

After transformations we obtain 

' ( ) ~ (1) 
4 ~ = E  0 3 AAV(vl)+ o 8 o A~ I = ~ __~ ( 3 . 1 3 )  

Performing a Fourier transform [5] on Eq. (3.13), we obtain 

d s Vu d 4 V d 2 Vv 
dY ~ ~ ~ + 3~ ~ T u  ~ + (4E-!~ ~ • ~~ Vu = 0, ( 3 . 1 4 )  

--oo 
Vy = Cle ~Jy -{-C2e ~2u + Cae%V + Cae %y + Cae%Y -{- Cse%Y~ ( 3 . 1 5 )  

2 -1/2 2/a 113 

aa, a ---- {2~ ~ + (2E-~/~)2/3 i V  8$2(2E-U~)2# - -  3(2E:-l/~$)aP}/2, 

a~,,  = - -{2~ 2 ~- (2E-1/2~)2/3 .-4- ]/rs~2(2E:i/2$)u/a 3 (2E-V~)4P} /2 .  

The c o n s t a n t s  C i ( i  = 1 ,  6) a r e  f o u n d  f r o m  b o u n d a r y  c o n d i t i o n s  ( 3 . 8 ) ,  ( 3 . 1 0 ) - ( 3 . 1 2 ) .  We 

write the axial and azimuthal velocity and pressure components in the form 

U(Zl ) -- ~ ( y8 y2 Y ) + V , ,  u(o 1) * 
E Fr R - -  --6 + 2 2 = v0 + 0o~ Pl 1) = P ,  + q~ 

where ~o = 0, if z < 0; Oo = 2~oR, if z > 0; ~0 = 0 , if z < 0; = R(y -- i)~o, if z > O. 

Substituting these values in boundary conditions (3.8), (3.10), (3.12) and performing a Fourier 
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transform, we obtain 

y :  0~ 

y =  t.~ 

dVy 
V~ = O~ ~ = O~ 

\ 

2Vo = dP'---L ) - -  dv + E k.7~u~ - -  ~aV~ _ = O~ 

Vy = ( - -  i~) H / ( 2 E  Fr), 2EdVv /dy  - -  a~aH ----- p** 

~aV v + dzVv/dy a + ~ H / ( E  Fr) = O~ 

~Vo ~a;,  + E A . (  ~ V ) . d-F=-- d~ --~ d~ ~ ~-- ~aV~ = 0~ 

H = h (1) (z) O~dz~ p ,  = p ,  e*~ ~ dz .  
- - ~  - - o o  

We will now eliminate p, and H from system (3.16). From the second 

with consideration of the fact that dp(~)/dz = dp,/dz + 2~(z)~oR (~(z) is 

and the third equation of system (3.16), it follows that 

P* ~ + "~" k'~-xya , H = 2E Fr V u / ( -  i~). 

S u b s t i t u t i n g  Eqs .  ( 3 . 1 7 ) ,  ( 3 . 1 5 )  i n  s y s t e m  ( 3 . 1 6 ) ,  we o b t a i n  a s y s t e m  o f  
t h e  s o l u t i o n  o f  w h i c h  h a s  t h e  fo rm  

2~oRf [ (As-- B.~) ] 
C~ = ~ lcD (WaAa + Wa) + WaA~ + W~ + ( ~ , -  A,) 

A~ - -  B 6 1 - 1  + ~ (WaA ~ + W , )  + W 3 A  6 -[- W 5, , C a = (DC~,, 

C a = (A~ - - B s ) C J ( B a  - -  A t )  + (A6 - -  B~)Cs/(B4 - -  A~),  

C~ = A~C~ + A~C~ + A6C~, 

C a = {(fZ 1 - -  a 3 ) C  3 -~- ( a  1 - -  o~4)C 4 -~  (~:z 1 - -  a s ) C  5 - ~  

+ ( a ~ - - a 6 )  C6} ( a a - - a ~ )  -1, C ~ = - - C a - - C 3 - - C ~ - - C ~ - - C ~ ,  

B~ ---- - -  {[(~a + =a - -  2) r _ ( ~  + =~ _ 2) ~ ]  (a ,  - -  a , )  (a~ - -  ~ ) - 1  + 

+ ($a + a ~ - -  2) e '~* - ($~ + ~1 - 2) ~=*/{[($~ + aa - 2) ~ a  _ 

(3.16) 

equation of system (3.7), 

a delta-function), 

(3.17) 

algebraic equations 

(3.18) 

_ (~2 + a l  _ 2) e "1] (a~ - -  % )  ( ~  - -  a l ) - 1  + (~2 + % _ 2) e % - -  (~a + a l  _ 2) e~l}  - I '  

A ,  = [ ( ~  - ~ ) ( ~ ,  - a l ) ( a a -  a , )  -~  + a t  - a~ ]  [a~ - a t  + ( a ~  - a l  ~) (a~ - a ~ ) ( a a  - -  = 0 ] ? ,  

D~ = {[(a~ - -  ~4a~) e~a--  ( a ~ -  ~4a~)e~] ( c q -  a 0 (a a - -  a~) -1 + 
+ (=~ - ~= , )  ~ ,  - (a,  ~ -  ~ % )  ~1} {(a~ - ~ % )  ~% - (a ,  ~ - ~ % )  ~ ]  + 

+ [(a~ - ~ % )  ~% - (a~ - ~ % )  ~1]  (a~ - a~) ( ~  - ~0-1} -1, ~ = 3,: 4,: 5, 6, 

W~ = [(3aa - -  aa/~ a - -  2ia~ Fr) e ~ - -  (3a 1 - -  al /~ - -  2ai~ Fr) e ~1] X 

X ( a l - - a O ( a ~ _ a l )  + ( 3 a ~ _ a d ~ - -  2 a i ~ F r ) e  ~i - - ( 3 a l - - a l / ~ ' - -  2 a i ~ F r ) e  ~x, i : 3 , 4 , 5 , 6 ~  
r = - -  (A6 --  De)/(D4 --  Ar -~- (A 6 --  B~)/(B, - -  A4) 

(A --  Ds)/(D , - -  A,) - -  (A 5 --  Bs)/(B 4 - -  Aa) " 

Using  a r e v e r s e  F o u r i e r  t r a n s f o r m ,  we f i n d  v (~  ) ,  p ( t )  h (X) (X  = y ,  z ,  0) w i t h  c o n s i d e r a t i o n  

o f  t h e  f a c t  t h a t  t h e  e x p r e s s i o n  r s h o u l d  be  u n d e r s t o o d  as  a u n i q u e  f u n c t i o n  w h i c h  c o i n c i d e s  
w i t h  t h e  a r i t h m e t i c  v a l u e  o f  t h e  r o o t  a l o n g  t h e  p o s i t i v e  r e a l  s e m i a x i s  on t h e  u p p e r  edge  o f  

t h e  s e c t i o n .  The d i s t r i b u t i o n  o f  t h e  f u n c t i o n s  v ( ~ ) ,  v ( :  ) R (~) v (~  ) Y , , which define the re- 

verse Fourier transform 

ico 

i [ e_SZg (3.19) 0 (x,  y) = ~ .~ (y.,, s) ds ,  s = i ~  
- - i o o  
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have different forms in the regions z < 0 

4. From analysis of the behavior of 

81/2 [ ya y2 
v~(z"Y)--ZFrn~--T + 2 

and z > 0. 

the integrand of Eq. (3.19) we find that at z < 0 

N 

N 

N 

6 

k = l  
6 

/t~ (u) = ~ Che~h(~")Y//~ (k-),: 

6 

Tn ---- - -  k -x~ (OH/Ox)~a~n~ 

A~---- A i h ,  B~ = BiS~ D i  = Di0,,  

r  = (A;~ - -  ~ ; ~  ) ( D ; ~  - -  A;0) - -  (A;0 - -  Doa ) (~ ;A - -  A,~),: W; = W ,~  

O o ---- ( A ; 0  - -  D ; A ) ( B I A  - -  A ; 6 )  - -  ( A ; 8 -  B 2 A ) ( D I Z k  - -  A ; 0 ) ,  

i = (C~. 3 - -  (Z1)((Z2 - -  (~'1) [((y2 _~ 0(,2)((Z3 _~_ (Z1) __ ((Z2 .~  (~.~)((Z2 _j~ fZ1)] ,  

o = [ ( ~ -  x % )  ~ - ( ~  - x % ) , ~ 1 ]  (~1 - ~ ) +  [ ( ~  - x % )  o ~  - ( ~  - x % )  ~ ]  ( : ~ _  ~1), 

= (x ~ - -  am + 2) e ~ (~1 - -  %)  + ( x~ + a s  - -  2) e% (% - -  %) - -  (x ~ - -  ~ - -  2) e ~x ( %  - -  %),; 

= * * * A* ( A ; 6  B ~ A ) ( D o ]  ( B ; A  H 1 (~..) ( W a A a - -  W*aA) [(D ( a6--  B*~A) + - -  + 

-- A;~)i(W~A;--W;A)a)*+ a'o(WiA;--WoA)],  ~1,~= 
= +_ [x~--(2xE-1/2)2/a]ln~ 

a3,  ~ = { 2x2 -6  (2xE -1/2)z/a • [8x~.(2xE-V~)~/3 _ 3(2xE-t/~)~/a ]1/2 }/2,  

c%,o = - -  { 2x2 + (2xE-a/2) 2/a • [8xZ(2xE-~/2) z/a --  3(2xE-1/2) a/311/2}/2. 

(i = 3, 4, 5, 6) are specified by Eq. (3.18), and the expressions Here W i, A i, B i, C i, D i 

f(Xn ) indicate that in place of x we must substitute in the expressions the roots %n of the 

equations H(% ) = O, n = i, 2, 3, .... Similarly, it follows from Eqs. (3.18), (3.19) that 
n 

at z > 0 the functions Vz, Vy, v e h are defined by Eq. (4.1) in which the functions ai(i = 

i, ..., 6) are replaced by the functions 

The 

fine the 
free surface 

a l ,  2 = - - [  - x 2  + (2xE-1/2)2/a] 1/2, 

a3,4  = [ - - 2 x  2 -  (2xE-1/~) 2/3 -4-l/8x2(2xE-1/2)2/~ --3(2xE-1/2)~/3]/2, 

a s ,  ~ = - -  [ - - 2 x  2 - -  (2xE-1/~) ~/3 +-- ]/8x2(2xE-1/~) 2/3 - -  3(2xE -1/2)4/31/2. 

functions H and roots ~ change correspondingly. Equations (4.1), (4.2), (3.18) de- 
N 

analytical solution of the problem of velocity field distribution and form of the 
of the liquid film. 
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5. Equations (4.1), (4.2), (3.18) were used to calculate numerically the flow of a 
liquid film on the inner surface of a rotating cylinder for the case where Fr = 0.6, E = 0.3, 
R = 5, ~ = 7.3, and ~o takes on various values. Initially the roots % of the function H were 

n 
found for the region z < 0 as well as the roots of the corresponding functions for the region 
z > 0. The roots were found by Mueller's iteration method for solutions of high order alge- 
braic equations [6]. After the roots were found the complex expressions (4.1), (4.2) were 
calculated numerically and their real components separated. 

Figure i shows the change in film thickness along the z axis for two values of ~o: Curve 
i corresponds to ~o = 2, 2, ~o = 0.5. As is evident from Fig. i, the film thickness increases 
rapidly in the region z < 0 near zero, forming a peak, then decreases abruptly, with a shallow 
depression appearing in the region z > 0. Formation of the peak is related to the fact that 
the pressure in the liquid is different at z < 0 and z > 0, according to Eqs. (2.7), (2.8), 
i.e., in the liquid near the cylinder surface at the point z = 0 there are pressure discon- 
tinuities, caused by the differing rotation velocities of the cylinders. If the angular 
velocity of rotation of the lower cylinder is greater than that of the upper, (~2 > ~i, ~o > 

0), then the pressure as z § +0 will be higher than as z § i.e., at the junction there 
appears an additional force which will hinder liquid motion, leading to formation of the peak. 
The greater the discontinuity in angular velocity, the higher will be the pressure gradient, 
and the higher will be the peak height, which agrees with the calculation presented in Fig. i. 
In the region z > 0 there is some acceleration of the liquid flow which leads, as follows from 
Fig. i, to formation of a shallow depression. The peak and depression are found only on a 
small segment of the z axis of the order of one or two film thicknesses extending in both 
directions from the plane z = 0, while at other points the surface is practically undisturbed, 
since the pressure gradient is nonzero only near z = 0. Film thicknesses far from the plane 
z = 0 are identical, since in those regions the flow is determined solely by gravitational 
and viscosity forces which are identical. 

The pressure distribution also has a sharp peak in the region z = 0 near the line divid- 
ing the tubes. It should be noted that such a form of pressure change has been observed in 
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cases of other types of abrupt change in boundary conditions, for example, in flow around an 
isolated projection [7]. 

Figure 2 shows the distribution along the y axis of the third velocity term in Eq. (4.1) 
at ~o = 2 and z = --1.62, -0.42, 0.42, 1.62 (curves 1-4). It is evident from Fig. 2 that in 
the region z < 0 (no = 2) we must subtract from the axial velocity distribution defined by 
the first two terms of Eq. (4.1) a correction specified by the third term of Eq. (4.1). From 
this it follows that the axial velocities, according to Fig. 3, will decrease as z +--0 in 
the range from y = 0 to 0.9, while in the range 0.9~y~ i they will be somewhat higher than 
the velocities in this range at infinity. As a whole, the flow slows down, and a peak is 
formed at z < O, which agrees with Fig. i. At z > 0 the values of the correction V to the 
axial velocity are greater than zero from 0~y~0.4, while at 0.4~y~0.72 consideration 
of the correction leads to retardation of the flow, while at 0.72~y~ i the correction is 
again positive. As is evident from Fig. 2, on the whole consideration of the third term in 
Eq. (4.1) leads to acceleration of the flow, which agrees with Fig. i. 

Figure 3 presents the distribution of the azimuthal component of the velocity along the 
y axis at no = 2 and at z = --1.62, -0.42, -0.02, 0.82, 1.62 (curves 1-5 respectively). It 
is evident from Fig. 3 that with increase in z (in the region z < 0) there is a continual in- 
crease in azimuthal velocity. Viscous stresses developed due to the difference in angular 
velocities of the semiinfinite tubes are transmitted up the flow and lead to azimuthal motion 
of the liquid in the range z > 0 near the junction. The presence of an immobile wall in the 
region z < 0 (the wall is immobile in the rotating coordinate system) hinders rotation of the 
liquid. Therefore the azimuthal velocity decreases upon approachto the cylinder wall. In 
the region z > 0 the liquid rotation velocity must coincide with the velocity of rotation of 
the semiinfinite tube; therefore with growth in z equalization of azimuthal velocity compo- 
nents along the layer thickness occurs, in agreement with Fig. 3. 

It should be noted that the effect of "inhibiting" the flow (formation of regions of 
closed circulation) often found in flows like those considered here (formation of a peak on 
the free surface) is also found in flow of a liquid within a tube consisting of two closely 
joined tubes rotating with different angular velocities [8], as well as in the limiting case 
where one tube is at rest and the other rotates [9]. Closed circulation zones are also 
formed in rotating channels of variable section [i0]. 
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